Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Chem Asian J ; 19(8): e202400067, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38334332

RESUMO

The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Humanos , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Cristalografia por Raios X , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/síntese química , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/síntese química , Receptores de Dopamina D2/metabolismo , Estrutura Molecular , Modelos Moleculares , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Relação Estrutura-Atividade
2.
ACS Chem Neurosci ; 14(18): 3357-3367, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37647579

RESUMO

This study aimed to investigate the changes in retinal neurotransmitters and the role of the dopamine D2 receptor (D2R) pathway in regulating the myopic refractive state. Tricolor guinea pigs were randomly divided into two groups: the normal control group (NC) and the form-deprivation myopia group (FDM). Animals in the FDM group had their right eye covered with a balloon for 4 weeks. These two groups were further divided into two subgroups based on intravitreal injection with D2R antagonist sulpiride once a week for 3 weeks (NC, NC-Sul, FDM, and FDM-Sul groups). Ultrahigh-performance liquid chromatography-tandem mass spectrometry was used to quantitatively detect the changes in 17 retinal neurotransmitters. Compared to the NC group, the concentrations of dopamine (DA) and γ-aminobutyric acid (GABA) decreased, while those of glutamate (Glu), 3-methoxytyramine (3-MT), and glycine increased, accompanied by an increase in myopic refraction and axial length (AL) in the FDM group. In the FDM-Sul group, glycine and DA levels were upregulated, whereas 3-MT and Glu levels were downregulated, accompanied by a decrease in myopic refraction and AL. The ratio of Glu to GABA (RGG) represents the balance between excitatory and inhibitory neurotransmitters. Notably, RGG changes occurred with corresponding AL changes, which increased in the FDM group and decreased in the FDM-Sul group. Decreased retinal DA concentration, with an increase in Glu, may be involved in the myopia progression. D2R antagonists might effectively slow myopia progression by increasing retinal DA, regulating Glu concentration to match GABA, and maintaining the balance between excitatory and inhibitory neurotransmitters.


Assuntos
Antagonistas dos Receptores de Dopamina D2 , Miopia , Cobaias , Animais , Antagonistas dos Receptores de Dopamina D2/farmacologia , Miopia/tratamento farmacológico , Ácido Glutâmico , Glicina , Ácido gama-Aminobutírico
3.
Proteomics ; 23(18): e2200325, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491763

RESUMO

The retinal pigment epithelial (RPE)/choroid complex regulates myopia development, but the precise pathogenesis of myopia remains unclear. We aimed to investigate the changes in RPE/choroid complex metabolism in a form deprivation myopia model after dopamine D2 receptor (D2R) modulation. Guinea pigs were randomly divided into normal (NC), form deprivation myopia (FDM), and FDM treated with dopamine D2R antagonist groups. Differential metabolites were screened using SIMCA-P software and MetaboAnalyst metabolomics analysis tool. Functions of differential metabolites were analyzed using KEGG enrichment pathways. Relative to the NC group, 38 differential metabolites were identified, comprising 29 increased metabolites (including nicotinic acid, cytosine, and glutamate) and 9 decreased metabolites, of which proline exhibited the largest decrease. Pathway analysis revealed regulation of arginine/proline and aspartate/glutamate metabolism. Intravitreal D2R antagonist injection increased proline concentrations and activated arginine/proline and purine metabolism pathways. In sum, D2R antagonists alleviated the myopia trend of refractive biological parameters in form deprivation myopic guinea pigs, suggesting the involvement of dopamine D2R signaling in myopia pathogenesis. The RPE/choroid may provide glutamate to the retina by activating proline metabolism via metabolic coupling with the retina. Dopamine D2R antagonism may modulate proline/arginine metabolic pathways in the RPE/choroid and regulate metabolism, information presentation, and myopia.


Assuntos
Dopamina , Miopia , Cobaias , Animais , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/metabolismo , Retina/metabolismo , Miopia/tratamento farmacológico , Miopia/etiologia , Miopia/metabolismo , Corioide/metabolismo , Corioide/patologia , Glutamatos/metabolismo , Modelos Animais de Doenças
4.
Psychopharmacology (Berl) ; 240(8): 1651-1666, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37378887

RESUMO

RATIONALE: Dopaminergic dysfunction is implicated in disorders of impulsivity and inattention. The rodent continuous performance test (rCPT) has been used to quantify changes in attention and impulsivity. OBJECTIVE: To examine the roles of dopamine receptors in attention and impulsivity behaviours measured in the rCPT variable stimulus duration (vSD) and the variable intertrial interval schedules (vITI) using DA receptor antagonists. METHODS: Two cohorts of 35 and 36 female C57BL/6JRj mice were examined separately in the rCPT, vSD, and vITI schedules, respectively. Both cohorts received antagonists of the following receptors: D1/5 (SCH23390, SCH: 0.01, 0.02, 0.04 mg/kg) and D2/3 (raclopride, RAC 0.03, 0.10, 0.30 mg/kg) in consecutive balanced Latin square designs with flanking reference measurements. The antagonists were subsequently examined for effects on locomotor activity. RESULTS: SCH showed similar effects in both schedules, and the effects were reference-dependent in the vITI schedule. SCH reduced responding, but improved response accuracy, impulsivity, discriminability, and locomotor activity. RAC showed mixed effects on responsivity, but improved accuracy and discriminability. The discriminability improvement was driven by an increase in hit rate in the vITI schedule and a reduction in false alarm rate in the vSD schedule. RAC also decreased locomotor activity. CONCLUSION: Both D1/5 and D2/3 receptor antagonism reduced responding, but the outcome on discriminability differed, stemming from individual effects on hit and false alarm rate, and the weight of omissions within the calculation. The effects of SCH and RAC suggest that endogenous DA increases responding and impulsivity, but reduces accuracy and shows mixed effects on discriminability.


Assuntos
Antagonistas de Dopamina , Roedores , Camundongos , Animais , Feminino , Antagonistas de Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1 , Atenção , Comportamento Impulsivo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Benzazepinas/farmacologia , Relação Dose-Resposta a Droga
5.
Clin Cancer Res ; 29(16): 3172-3188, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249604

RESUMO

PURPOSE: Temozolomide resistance remains a major obstacle in the treatment of glioblastoma (GBM). The combination of temozolomide with another agent could offer an improved treatment option if it could overcome chemoresistance and prevent side effects. Here, we determined the critical drug that cause ferroptosis in GBM cells and elucidated the possible mechanism by which drug combination overcomes chemoresistance. EXPERIMENTAL DESIGN: Haloperidol/temozolomide synergism was assessed in GBM cell lines with different dopamine D2 receptor (DRD2) expression in vitro and in vivo. Inhibitors of ferroptosis, autophagy, endoplasmic reticulum (ER) stress and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) were used to validate the specific mechanisms by which haloperidol and temozolomide induce ferroptosis in GBM cells. RESULTS: In the present work, we demonstrate that the DRD2 level is increased by temozolomide in a time-dependent manner and is inversely correlated with temozolomide sensitivity in GBM. The DRD2 antagonist haloperidol, a butylbenzene antipsychotic, markedly induces ferroptosis and effectively enhances temozolomide efficacy in vivo and in vitro. Mechanistically, haloperidol suppressed the effect of temozolomide on cAMP by antagonizing DRD2 receptor activity, and the increases in cAMP/PKA triggered ER stress, which led to autophagy and ferroptosis. Furthermore, elevated autophagy mediates downregulation of FTH1 expression at the posttranslational level in an autophagy-dependent manner and ultimately leads to ferroptosis. CONCLUSIONS: Our results provide experimental evidence for repurposing haloperidol as an effective adjunct therapy to inhibit adaptive temozolomide resistance to enhance the efficacy of chemoradiotherapy in GBM, a strategy that may have broad prospects for clinical application.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Antagonistas dos Receptores de Dopamina D2/farmacologia , Linhagem Celular Tumoral , Autofagia , Estresse do Retículo Endoplasmático , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Dopamina D2/genética
6.
Neuropharmacology ; 234: 109544, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37055008

RESUMO

Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 ß-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.


Assuntos
Antagonistas dos Receptores de Dopamina D2 , Dopamina , Neurônios Dopaminérgicos , Neurotensina , Núcleo Accumbens , Receptores de Neurotensina , Área Tegmentar Ventral , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/metabolismo , Neurotensina/metabolismo , Neurotensina/farmacologia , Ligantes , Antagonistas dos Receptores de Dopamina D2/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia
7.
Addiction ; 118(6): 1053-1061, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36710462

RESUMO

BACKGROUND AND AIMS: Whereas striatal dopamine D2 receptor (D2R) availability has shown to be altered in individuals with alcohol use disorder (AUD) and in healthy individuals with a family history of AUD, the role of D2R in the development of AUD is unknown. In this positron emission tomography (PET) study, we measured whether D2R availability is associated with subsequent alcohol use and alcohol-related factors, at a follow-up 8 to 16 years post-PET scan, in social drinkers. DESIGN: Longitudinal study investigating the association between PET data and later self-report measures in healthy individuals. SETTING: Academic research imaging centre in Stockholm, Sweden. PARTICIPANTS: There were 71 individuals (68 of whom had evaluable PET data, 5 females, 42.0 years mean age) from a series of previous PET studies. MEASUREMENTS: One PET examination with the D2R antagonist radioligand [11 C]raclopride at baseline and self-report measures assessing alcohol use, drug use, impulsivity, reward sensitivity and family history of alcohol or substance use disorder at follow-up. FINDINGS: We found no evidence for an association between D2R availability and later alcohol use (B = -0.019, B 95% CI = -0.043 to -0.006, P = 0.147) nor for the majority of the alcohol-related factors (B 95% CI = -0.034 to 0.004, P = 0.273-0.288). A negative association with a small effect size was found between D2R availability and later impulsivity (B = -0.017, B 95% CI = -0.034 to -0.001, P = 0.046). CONCLUSIONS: Low striatal dopamine D2 receptor availability may not be a strong predictor in the development of alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Corpo Estriado , Receptores de Dopamina D2 , Feminino , Humanos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/diagnóstico por imagem , Alcoolismo/genética , Alcoolismo/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Etanol , Estudos Longitudinais , Tomografia por Emissão de Pósitrons/métodos , Racloprida/farmacologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/metabolismo , Masculino , Adulto , Antagonistas dos Receptores de Dopamina D2/farmacologia , Seguimentos
8.
Bioorg Chem ; 130: 106257, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375349

RESUMO

Ten new indole alkaloids (1-10) as well as eleven known analogs (11-21) were isolated from the stems and hooks of Uncaria rhynchophylla. Their structure elucidation was based on extensive NMR studies, MS and ECD data, with the essential aid of DFT prediction of ECD spectra. Compound 1 was determined as a 17,19-seco-cadambine-type alkaloid, and compound 3 was confirmed to be a 3,4-seco-tricyclic monoterpene indole alkaloid, which are the first seco-alkaloids possessing such cleavage positions from U. rhynchophylla. All the isolated compounds were evaluated for their bioactivities on dopamine D2 and Mu opioid receptors for discovering natural therapeutic drugs targeting central nervous system (CNS) diseases. Compounds 1, 2, 4, 5, 20 and 21 showed antagonistic bioactivities on the D2 receptor (IC50 0.678-15.200 µM), and compounds 1, 3, 6, 9, 10, 13, 18, 19 and 21 exhibited antagonistic effects on the Mu receptor (IC50 2.243-32.200 µM). Among them, compounds 1 and 21 displayed dual-target activities. Compound 1 showed conspicuous antagonistic activity on D2 and Mu receptors with the IC50 values of 0.678 ± 0.182 µM and 13.520 ± 2.480 µM, respectively. Compound 21 displayed moderate antagonistic activity on the two receptors with the IC50 values at 15.200 ± 1.764 µM and 32.200 ± 5.695 µM, respectively.


Assuntos
Antagonistas dos Receptores de Dopamina D2 , Alcaloides Indólicos , Uncaria , Alcaloides/química , Alcaloides/farmacologia , Dopamina/metabolismo , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Receptores Opioides mu/antagonistas & inibidores , Uncaria/química , Antagonistas dos Receptores de Dopamina D2/química , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia
9.
Elife ; 112022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468832

RESUMO

Human behaviour requires flexible arbitration between actions we do out of habit and actions that are directed towards a specific goal. Drugs that target opioid and dopamine receptors are notorious for inducing maladaptive habitual drug consumption; yet, how the opioidergic and dopaminergic neurotransmitter systems contribute to the arbitration between habitual and goal-directed behaviour is poorly understood. By combining pharmacological challenges with a well-established decision-making task and a novel computational model, we show that the administration of the dopamine D2/3 receptor antagonist amisulpride led to an increase in goal-directed or 'model-based' relative to habitual or 'model-free' behaviour, whereas the non-selective opioid receptor antagonist naltrexone had no appreciable effect. The effect of amisulpride on model-based/model-free behaviour did not scale with drug serum levels in the blood. Furthermore, participants with higher amisulpride serum levels showed higher explorative behaviour. These findings highlight the distinct functional contributions of dopamine and opioid receptors to goal-directed and habitual behaviour and support the notion that even small doses of amisulpride promote flexible application of cognitive control.


Assuntos
Dopamina , Antagonistas de Entorpecentes , Humanos , Amissulprida , Voluntários Saudáveis , Antagonistas dos Receptores de Dopamina D2/farmacologia , Receptores Opioides
10.
Behav Brain Res ; 435: 114064, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35987306

RESUMO

Repeated methamphetamine exposure impairs reversal learning in laboratory animals and downregulates dopamine D2 receptor expression. In the present study, we tested the possibility that repeated exposure to the dopamine D2 antagonist, eticlopride, would increase D2 receptor expression, improve behavioral flexibility and restore behavioral flexibility that was disrupted by exposure to methamphetamine in rats. Male Sprague-Dawley rats received repeated daily pretreatment with the dopamine D2 antagonist, eticlopride (0.0 or 0.3 mg/kg/day, 14 days). Three days after the last treatment, whole brain (minus olfactory bulbs and cerebellum) dopamine D2 receptor expression was measured using flow cytometry in one group and reversal learning performance was measured in another group. Reversal learning was also measured in other groups prior to and after methamphetamine exposure (0.0 or 2.0 mg/kg, 4 injections, 2 h apart, 1 day) followed by repeated eticlopride (0.0 or 0.3 mg/kg, 14 days) treatment. Eticlopride treatment increased D2 receptor expression and improved reversal learning performance. Methamphetamine impaired reversal learning performance and eticlopride treatment reversed the deficit. These results suggest that repeated administration of eticlopride can restore behavioral flexibility and that upregulation of D2 receptors might be an effective adjunct to treatment of methamphetamine misuse.


Assuntos
Metanfetamina , Animais , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Masculino , Metanfetamina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Salicilamidas/farmacologia
11.
Eur J Neurosci ; 56(3): 4121-4140, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746869

RESUMO

Dopamine (DA) modulates cognition in part via differential activation of D1 and D2 receptors within the striatum and prefrontal cortex, yet evidence for cognitive impairments stemming from DA blockade or deficiency is inconsistent. Given the predominance of D1 over D2 receptors (R) in the prefrontal cortex of primates, D1-R blockade should more strongly influence frontal executive function (including working memory), while D2-R blockade should impair processes more strongly associated with the dorsal striatum (including cognitive flexibility, and learning). To test how systemic DA blockade disrupts cognition, we administered D1-R and D2-R like antagonists to healthy monkeys while they performed a series of cognitive tasks. Two selective DA receptor antagonist drugs (SCH-23390 hydrochloride: D1/D5-R antagonist; or Eticlopride hydrochloride: D2/D3-R antagonist) or placebo (0.9% saline) were systemically administered. Four tasks were used: (1) 'visually guided reaching', to test response time and accuracy, (2) 'reversal learning', to test association learning and attention, (3) 'self-ordered sequential search' to test spatial working memory, and (4) 'delayed match to sample' to test object working memory. Increased reach response times and decreased motivation to work for liquid reward was observed with both the D1/D5-R and D2/D3-R antagonists at the maximum dosages that still enabled task performance. The D2/D3-R antagonist impaired performance in the reversal learning task, while object and spatial working memory performance was not consistently affected in the tested tasks for either drug. These results are consistent with the theory that systemic D2/D3-R antagonists preferentially influence striatum processes (cognitive flexibility) while systemic D1/D5-R administration is less detrimental to frontal executive function.


Assuntos
Motivação , Receptores de Dopamina D1 , Animais , Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Aprendizagem/fisiologia , Primatas , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2
12.
Behav Pharmacol ; 33(5): 355-363, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695537

RESUMO

Sex differences in cocaine-induced behaviors are well established. In rodents, females show enhanced locomotion to cocaine over multiple trials compared with males, a behavioral response known as sensitization. Estradiol enhances cocaine-induced sensitization in female rats by agonizing dopaminergic activity within the brain. In female quail, cocaine does not increase locomotion regardless of increased estradiol. A higher D2:D1 dopamine receptor ratio in quail compared with rodents may explain this sex and species difference. The goal of the present work was to investigate the role of D2 receptors in cocaine-induced locomotion and sensitization in Japanese quail and to determine whether a greater D2 receptor availability contributed to the lack of cocaine-induced sensitization in female quail found in previous studies. Male and female quail were administered 0, 0.03, 0.05, or 0.07 mg/kg of eticlopride (Eti) followed by 10 mg/kg of cocaine or saline then immediately placed in open-field chambers. Distance traveled was recorded for 30 min daily for 7 days. In female quail, cocaine-induced sensitization was observed with 0.03 or 0.05 mg/kg Eti, but not in cocaine-only females. In male quail, cocaine-induced sensitization was observed similar to previous research. However, Eti did not enhance cocaine-induced locomotion or produce sensitization in male quail. The D2 receptor likely mediates cocaine's motor stimulating effects in quail. In females, this effect is more pronounced. Since high D2 availability is protective against stimulant abuse, Japanese quail may be a useful model for investigating the role of the D2 receptor in cocaine addiction, but further research is needed.


Assuntos
Cocaína , Animais , Comportamento Animal , Cocaína/farmacologia , Coturnix/fisiologia , Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Estradiol/farmacologia , Feminino , Masculino , Ratos , Receptores de Dopamina D1 , Receptores de Dopamina D2
13.
J Neurosci ; 42(21): 4394-4400, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35501156

RESUMO

Emotion recognition abilities are fundamental to our everyday social interaction. A large number of clinical populations show impairments in this domain, with emotion recognition atypicalities being particularly prevalent among disorders exhibiting a dopamine system disruption (e.g., Parkinson's disease). Although this suggests a role for dopamine in emotion recognition, studies employing dopamine manipulation in healthy volunteers have exhibited mixed neural findings and no behavioral modulation. Interestingly, while a dependence of dopaminergic drug effects on individual baseline dopamine function has been well established in other cognitive domains, the emotion recognition literature so far has failed to account for these possible interindividual differences. The present within-subjects study therefore tested the effects of the dopamine D2 antagonist haloperidol on emotion recognition from dynamic, whole-body stimuli while accounting for interindividual differences in baseline dopamine. A total of 33 healthy male and female adults rated emotional point-light walkers (PLWs) once after ingestion of 2.5 mg haloperidol and once after placebo. To evaluate potential mechanistic pathways of the dopaminergic modulation of emotion recognition, participants also performed motoric and counting-based indices of temporal processing. Confirming our hypotheses, effects of haloperidol on emotion recognition depended on baseline dopamine function, where individuals with low baseline dopamine showed enhanced, and those with high baseline dopamine decreased emotion recognition. Drug effects on emotion recognition were related to drug effects on movement-based and explicit timing mechanisms, indicating possible mediating effects of temporal processing. Results highlight the need for future studies to account for baseline dopamine and suggest putative mechanisms underlying the dopaminergic modulation of emotion recognition.SIGNIFICANCE STATEMENT A high prevalence of emotion recognition difficulties among clinical conditions where the dopamine system is affected suggests an involvement of dopamine in emotion recognition processes. However, previous psychopharmacological studies seeking to confirm this role in healthy volunteers thus far have failed to establish whether dopamine affects emotion recognition and lack mechanistic insights. The present study uncovered effects of dopamine on emotion recognition in healthy individuals by controlling for interindividual differences in baseline dopamine function and investigated potential mechanistic pathways via which dopamine may modulate emotion recognition. Our findings suggest that dopamine may influence emotion recognition via its effects on temporal processing, providing new directions for future research on typical and atypical emotion recognition.


Assuntos
Dopamina , Haloperidol , Adulto , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Emoções , Feminino , Haloperidol/farmacologia , Humanos , Masculino , Percepção
14.
Elife ; 112022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35502897

RESUMO

The auditory mismatch negativity (MMN) has been proposed as a biomarker of NMDA receptor (NMDAR) dysfunction in schizophrenia. Such dysfunction may be caused by aberrant interactions of different neuromodulators with NMDARs, which could explain clinical heterogeneity among patients. In two studies (N = 81 each), we used a double-blind placebo-controlled between-subject design to systematically test whether auditory mismatch responses under varying levels of environmental stability are sensitive to diminishing and enhancing cholinergic vs. dopaminergic function. We found a significant drug × mismatch interaction: while the muscarinic acetylcholine receptor antagonist biperiden delayed and topographically shifted mismatch responses, particularly during high stability, this effect could not be detected for amisulpride, a dopamine D2/D3 receptor antagonist. Neither galantamine nor levodopa, which elevate acetylcholine and dopamine levels, respectively, exerted significant effects on MMN. This differential MMN sensitivity to muscarinic versus dopaminergic receptor function may prove useful for developing tests that predict individual treatment responses in schizophrenia.


Assuntos
Dopamina , Potenciais Evocados Auditivos , Acetilcolina/farmacologia , Estimulação Acústica , Colinérgicos , Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Humanos , Antagonistas Muscarínicos/farmacologia , Receptores Dopaminérgicos
15.
Neurosci Lett ; 781: 136674, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35525502

RESUMO

Nitrous oxide (N2O) has a long history of abuse, but its abuse mechanism has not been clear yet. This research aimed at the possibility of mesolimbic dopaminergic system (MLDS) involved in the rewarding effect of N2O. In this work, the rewarding behavior of N2O in mice was evaluated using a typical gas-administered conditioned place preference (CPP) procedure. SCH 23390, a Dopamine D1 receptor (D1R) antagonist, and Haloperidol, a Dopamine D2 receptor (D2R) antagonist were administered during CPP to evaluate the role of dopamine receptors in the N2O-induced CPP. The accompanying changes in phosphorylation of extracellular signal-regulated kinase (ERK) in MLDS related brain regions, including the ventral tegmental area (VTA), caudate putamen (CPu), prefrontal cortex (PFC), and nucleus accumbens (NAc) were measured to assess the neural plasticity changes in the CPP mice by Western blot analysis. Results revealed that 60% N2O induced CPP in the gas-administered mice and promoted the ERK phosphorylation (p-ERK) in the NAc and CPu during the test session of the CPP test. Pretreatment of SCH 23390 (0.5 mg/kg) inhibited the acquisition of N2O-induced CPP and the enhanced p-ERK in NAc. It suggested that Dopamine D1 receptor may play an important role in the acquisition of N2O-induced CPP and the accompanied ERK activation in the NAc, which provide insight into the molecular mechanism in the rewarding properties of nitrous oxide.


Assuntos
Óxido Nitroso , Núcleo Accumbens , Animais , Benzazepinas , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Óxido Nitroso/farmacologia , Núcleo Accumbens/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo
16.
Elife ; 112022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289748

RESUMO

Some theories of human cultural evolution posit that humans have social-specific learning mechanisms that are adaptive specialisations moulded by natural selection to cope with the pressures of group living. However, the existence of neurochemical pathways that are specialised for learning from social information and individual experience is widely debated. Cognitive neuroscientific studies present mixed evidence for social-specific learning mechanisms: some studies find dissociable neural correlates for social and individual learning, whereas others find the same brain areas and, dopamine-mediated, computations involved in both. Here, we demonstrate that, like individual learning, social learning is modulated by the dopamine D2 receptor antagonist haloperidol when social information is the primary learning source, but not when it comprises a secondary, additional element. Two groups (total N = 43) completed a decision-making task which required primary learning, from own experience, and secondary learning from an additional source. For one group, the primary source was social, and secondary was individual; for the other group this was reversed. Haloperidol affected primary learning irrespective of social/individual nature, with no effect on learning from the secondary source. Thus, we illustrate that dopaminergic mechanisms underpinning learning can be dissociated along a primary-secondary but not a social-individual axis. These results resolve conflict in the literature and support an expanding field showing that, rather than being specialised for particular inputs, neurochemical pathways in the human brain can process both social and non-social cues and arbitrate between the two depending upon which cue is primarily relevant for the task at hand.


Assuntos
Dopamina , Haloperidol , Sinais (Psicologia) , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Haloperidol/farmacologia , Humanos , Receptores de Dopamina D2 , Recompensa
17.
Proc Natl Acad Sci U S A ; 119(11): e2118570119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35263227

RESUMO

SignificanceDespite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. Here we show that dopamine D2 receptor (DRD2) is expressed in the cilia and somata of mature olfactory sensory neurons (OSNs), while nasal dopamine (DA) is mainly released from the sympathetic nerve terminals, which innervate the mouse olfactory mucosa (OM). We further demonstrate that DA-DRD2 signaling in the nose plays important roles in regulating olfactory function using genetic and pharmacological approaches. Moreover, the local DA synthesis in mouse OM is reduced during hunger, which contributes to starvation-induced olfactory enhancement. Altogether, we demonstrate that nasal DA and DRD2 receptor can serve as the potential peripheral targets for olfactory modulation.


Assuntos
Dopamina , Neurônios Receptores Olfatórios , Receptores de Dopamina D2 , Animais , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Humanos , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Olfato
18.
Behav Brain Res ; 422: 113748, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35038463

RESUMO

Repetitive motor behaviors are repetitive and invariant movements with no apparent function, and are common in several neurological and neurodevelopmental disorders, including autism spectrum disorders (ASD). However, the neuropathology associated with the expression of these abnormal stereotypic movements is not well understood, and effective treatments are lacking. The ketogenic diet (KD) has been used for almost a century to treat intractable epilepsy and, more recently, disorders associated with inflexibility of behavioral routines. Here, we show a novel application for KD to reduce an abnormal repetitive circling behavior in a rodent model. We then explore potential mediation through the striatum, as dysregulation of cortico-basal ganglia circuitry has previously been implicated in repetitive motor behavior. In Experiments 1 and 2, adult FVB mice were assessed for levels of repetitive circling across a 3-week baseline period. Mice were then switched to KD and repetitive circling was assessed for an additional 3 weeks. In Experiment 1, time on KD was associated with reduced repetitive behavior. In Experiment 2, we replicated these benefits of KD and assessed dendritic spine density in the striatum as one potential mechanism for reducing repetitive behavior, which yielded no differences. In Experiment 3, adult female circling mice were given a single administration of a dopamine D2 receptor antagonist (L-741,646) that was associated with reduced repetitive behavior over time. Future research will explore the relationship between KD and dopamine within basal ganglia nuclei that may be influencing the benefits of KD on repetitive behavior.


Assuntos
Comportamento Animal , Sintomas Comportamentais/dietoterapia , Sintomas Comportamentais/tratamento farmacológico , Dieta Cetogênica , Antagonistas dos Receptores de Dopamina D2/farmacologia , Comportamento Estereotipado , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Feminino , Masculino , Camundongos , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
19.
Neuropsychopharmacology ; 47(8): 1493-1502, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34811469

RESUMO

Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine. In addition, FC significantly increased the microdialysate concentrations of dopamine and taurine, but did not modulate the extracellular levels of glycine or serine. Despite the increase in glutamate levels, ex vivo electrophysiology demonstrated a reduced excitability of striatal neurons in response to FC. The decrease in evoked potentials was accompanied by an increased paired pulse ratio, and a reduced frequency of spontaneous excitatory postsynaptic currents, suggesting that FC depresses striatal output by reducing the probability of transmitter release. The effect by FC was mimicked by chemogenetic inhibition of astrocytes using Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) targeting GFAP, and by the glial glutamate transporter inhibitor TFB-TBOA. Both FC- and TFB-TBOA-mediated synaptic depression were inhibited in brain slices pre-treated with the dopamine D2 receptor antagonist sulpiride, but insensitive to agents acting on presynaptic glutamatergic autoreceptors, NMDA receptors, gap junction coupling, cannabinoid 1 receptors, µ-opioid receptors, P2 receptors or GABAA receptors. In conclusion, our data collectively support a role for astrocytes in modulating striatal neurotransmission and suggest that reduced transmission after astrocytic inhibition involves dopamine.


Assuntos
Astrócitos , Dopamina , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Ácido Glutâmico/metabolismo , Receptores de Dopamina D2/metabolismo , Transmissão Sináptica
20.
Behav Brain Res ; 417: 113611, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34592376

RESUMO

Fear extinction (FExt) is used to treat patients with posttraumatic stress disorder (PTSD). However, fear related to traumatic events can be persistent and return even after successful extinction. The neurochemical control of extinction seems to be performed by several neurotransmitters, including dopamine (DA), through D1 and D2 receptors. Recently, we showed that intranasally applied DA (IN-DA) facilitated the FExt, but the mechanisms by which it promoted this effect are still unknown. This study focused on investigating whether these effects are mediated by the action of DA on D2-like receptors since these receptors seem to be related to neurochemical and molecular changes underlying extinction. Also, we investigated whether IN-DA treatment would affect conditioned fear-induced antinociception (Fear-IA). Rats treated with IN-DA (1 mg/kg) twenty-five minutes after sulpiride (SUL; 40 mg/kg, i.p., D2-antagonist) were subjected to the extinction of contextual fear. IN-DA applied before the extinction session induced the FExt and prevented Fear-IA. These effects were impaired by pre-treatment with SUL, suggesting that the IN-DA effects are mediated by DA on D2-like receptors. SUL per se also facilitated the FExt but did not affect Fear-IA. These data suggest IN-DA as a promising pharmacological tool to supplement the psychotherapy of patients suffering from PTSD.


Assuntos
Condicionamento Psicológico/fisiologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Dopamina/farmacologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Receptores de Dopamina D2/fisiologia , Sulpirida/farmacologia , Administração Intranasal , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dopaminérgicos/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Ratos , Sulpirida/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...